Abstract

Sloshing is a kind of fluid motion inside partially filled containers. In spacecraft and other partially filled moving containers, sloshing plays an important role. The contact line between the fluid and solid boundary affects the fluid movement and sloshing during motion. A physical model for steady fluid flow with a partial slip boundary is presented and equations for this model are derived for cylindrical (tube-shaped) tanks. This gives a nonlinear system of differential equations that is solved numerically by using a Successive Over-Relaxation (SOR) technique and graphical results are shown. Variations in steady fluid flow are observed with changes in the slip length and some useful results are derived. The effects on the microscopic radius of the fluid layer in a capillary tube are also shown through graphical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call