Abstract

The effect of the anion size and electronegativity of halide-based anions (Cl-, Br-, I-, and BF4-) on the interionic interaction in 1-ethyl-3-methylimidazolium-based ionic liquids (ILs) C2mim X (X = Cl, Br, I, and BF4) is studied by a combined approach of experiments (Raman, IR, UV-vis spectroscopy) and quantum chemical calculations. The fingerprint region of the Raman spectra of these C2mim X ion-pairs provides evidence of the presence of the conformational isomerism in the alkyl chain of the C2mim+ cation. The Raman and IR bands of the imidazolium C2-H stretch vibration for C2mim X (X = Cl, Br, I, and BF4) were noticeably blue-shifted with the systematic change in size of anions and the electronegativity. The observed blue shift in the C2-H stretch vibration follows the order C2mim BF4 > C2mim I > C2mim Br > C2mim Cl, which essentially indicates the strong hydrogen bonding in the C2mim Cl ion-pair. DFT calculations predict at least four configurations for the cation-anion interaction. On the basis of relative optimized energies and basis-set-superposition-error (BSSE) corrected binding energies for all ion-pair configurations, the most active site for the anion interaction was found at the C2H position of the cation. Besides information about the C2H position, our DFT results give insights into the anion interaction with the ethyl and methyl chain of the cation, which was also confirmed experimentally [ Chem. Commun. 2015 , 51 , 3193 ]. The anion interaction at the C2H site of the cation favors a planar geometry in C2mim X for X = Cl, Br, and I; however, for BF4, the system prefers a nonplanar geometry where the anion is located over the imidazolium ring. TD-DFT results were used to analyze the observed UV-vis absorption spectra in a more adequate way giving insights into the electronic structure of the ILs. Overall, a reasonable correlation between the observed and the DFT-predicted results is established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.