Abstract

Sirtuins compose a unique collection of histone deacetylase enzymes that have a wide variety of enzymatic activities and regulate diverse cell functions such as cellular metabolism, longevity and energy homeostasis, mitochondrial function, and biogenesis. Impaired sirtuin functions or alterations of their expression levels may result in several pathological conditions and contribute to the altered metabolic phenotype of malignantly transformed cells in a significant manner. In the twenty-first century, principles of personalized anticancer treatment need to involve not only the evaluation of changes of the genetic material, but also the mapping of epigenetic and metabolic alterations, to both of which the contribution of sirtuin enzymes is fundamental. Since sirtuins are central players in the maintenance of cellular energy and metabolic homeostasis, they are key elements in the development of metabolic transformation of cancer cells referred to as the Warburg effect. Although its most well-known features are enhanced glycolysis and excessive lactate production, Warburg effect has several aspects involving both carbohydrate, lipid, and amino acid metabolism, among which different tumor types have different preferences. Therefore, energy supply of cancer cells can be impaired by a growing number of antimetabolite agents, for which appropriate vectors are strongly needed. However, data are controversial about their tumor suppressor or oncogenic properties, the biological effects of sirtuin enzymes strongly depend on the tissue microenvironment (TME) in which they are expressed. Immune cells are regarded as key players of TME. Sirtuins regulate the survival, activation, metabolism, and mitochondrial function of these cells, therefore, they are not only single elements, but key regulators of the network that determines anticancer immunity. Altered metabolism of tumor cells induces changes in the gene expression pattern of cells in TME, due to altered concentrations of metabolite cofactors of epigenetic modifiers including sirtuins. In summary, epigenetic and metabolic alterations in malignant diseases are influenced by sirtuins in a significant manner, and should be treated in a personalized approach. Since they often develop in early stages of cancer, broad examination of these alterations is required at time of the diagnosis in order to provide a personalized combination of distinct therapeutic agents.

Highlights

  • First definition of epigenetics is derived from Conrad Hal Waddington (1942), who proposed it as “the causal interactions between genes and their products, which bring the phenotype into being” [1]

  • SIRT7 was identified as a suppressor of MYC function, SIRT7 is essential in maintaining low levels of H3K18ac in cancer cells that is associated with poor clinical outcome [11, 12]

  • Due to our previous results, the expression level of SIRT6 enzyme negatively correlates with the level of the tumor suppressor miR-124 in acute myeloid leukemia (AML) [20]

Read more

Summary

Frontiers in Oncology

Impaired sirtuin functions or alterations of their expression levels may result in several pathological conditions and contribute to the altered metabolic phenotype of malignantly transformed cells in a significant manner. Since sirtuins are central players in the maintenance of cellular energy and metabolic homeostasis, they are key elements in the development of metabolic transformation of cancer cells referred to as the Warburg effect. Epigenetic and metabolic alterations in malignant diseases are influenced by sirtuins in a significant manner, and should be treated in a personalized approach. Since they often develop in early stages of cancer, broad examination of these alterations is required at time of the diagnosis in order to provide a personalized combination of distinct therapeutic agents

INTRODUCTION
SIRTUINS AND CANCER
Deacetylation Demalonylation Desuccinylation Deglutarylation
THE WARBURG EFFECT
SIRTUIN ENZYMES
CONNECTION WITH ALTERED
Cytotoxic T lymphocyte
SPECIAL ASPECTS OF NOVEL EPIGENETIC AND METABOLIC THERAPEUTIC APPROACHES
CONCLUDING REMARKS AND FUTURE PERSPECTIVES
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.