Abstract

An acyclic phosphonate-linked nucleic acid backbone (ZNA) demonstrated the capability to support duplex formation and propagate genetic information in vivo, unveiling its potential for evolution into a synthetic genetic system (XNA). To determine the structural impact of such modification, modified Dickerson Drew DNA dodecamers (DDDs) were prepared by solid phase synthesis, each containing either an (R) or (S) isomeric form of a cytosine ZNA nucleotide. While the DDD is known to adopt a stable duplex, both duplex and hairpin forms were simultaneously observed for both modified oligonucleotides by NMR spectroscopy over a broad temperature range (5-65 °C). Diffusion-ordered spectroscopy (DOSY) experiments allowed to separate duplex and hairpin signals based on the different diffusion constants of both conformational states. For the oligomer containing (R)-ZNA, only the duplex form occurred at 5 °C, while it was not possible to determine by NMR a single hairpin conformation at higher temperatures. In the case of the (S)-ZNA nucleoside modified oligomer, both hairpin and duplex forms were observable at 0 °C, while a single hairpin conformation was detected at 37 °C, suggesting a higher destabilizing effect on dsDNA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.