Abstract

Plant productivity in drylands is frequently co-limited by water and nutrient availability, and thus is expected to be influenced by ongoing changes in rainfall regime and atmospheric nutrient deposition. Roadside grasslands are widespread worldwide, represent ecologically meaningful examples of highly dynamic anthropogenic ecosystems, and are well suited to investigate global change effects on plant performance. We evaluated the effects of changes in water and nutrient availability on the relative dominance and physiological performance of Bromus rubens, Carduus tenuifolius and Melilotus officinalis, which belong to contrasting functional groups (grasses, non-legume forbs and legumes, respectively). We conducted a factorial field experiment in two semiarid roadside grasslands in central Spain with the following factors: watering (no water addition vs. watering with 50% of the monthly total precipitation median) and fertilization (no fertilization vs. addition of 80 kg N ha−1 year−1). The cover of the species evaluated, was surveyed over a 2-year period. Plant isotopic composition (leaf δ13C and δ18O) and nutrient concentrations (foliar N, P and K) were used to assess plant ecophysiological performance. Carduus was able to cope with lower water availability levels through stomatal adjustments without a significant reduction in its relative dominance. The relative dominance of Bromus was negatively affected by even moderate water stress, although elevated nutrient deposition buffered the adverse impact of drought through a nutrient-mediated enhancement of plant water use efficiency. Increased nutrient availability strongly decreased the relative dominance of Melilotus, irrespective of water availability. Species-specific physiological mechanisms of adjustment to treatments suggest that plant communities in roadside grasslands will not respond as a unit to global environmental change. The characterization of species-specific responses to major global change drivers may improve predictions about the future dynamics of plant communities in novel ecosystems such as roadside slopes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.