Abstract
Abstract The effects of silica deposition resulting from the combustion of siloxane-containing biomethane on the performance of seven domestic appliances have been studied. The results show that silica deposition increases the flow resistance across the heat exchangers, which consequently reduces the air intake from the surroundings. For the flow-through hot water heater studied, the reduction in air intake in the appliance results in a substantial increase in the CO emission with time, ultimately resulting in a safety risk for the end user. For the fully premixed boilers examined, the increased flow resistance reduces the thermal input, and thus the thermal output, of the appliance. The extent of the reduction in thermal input is seen to depend strongly upon the concentration silicon in the fuel, and the configuration and material of the heat exchanger. For the boilers studied, the ion current measured by the flame safety device decreases with time because silica deposits on the probe used to measure the current in the flame; this ultimately results in boiler failure. Based on the results, extrapolation methods are proposed that can be used to assess the impact of low silicon concentrations in biomethane on appliance performance and safety with time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.