Abstract
The effects of signal contamination of secondary data are investigated in the framework of adaptive target detection in remotely sensed hyperspectral images. In contrast to previous studies on signal contamination, the focus of this paper is the detection of targets with unknown spectral signatures (i.e., anomalies) and adaptive detection methods based on a local estimation of the background covariance matrix. Contamination due to the target signal is expected to have a more severe impact when the number of secondary data is limited. An analytical model for signal contamination is developed that allows variability in the extent of contamination. Several parameters, such as the contamination fraction of secondary data and the contaminating signal energy, are introduced, and a contaminating signal-to-interference-plus-noise ratio is derived as an objective measure of contamination. The proposed model is employed to experimentally evaluate signal contamination effects and the impact of its variability on the performance of adaptive detection of local anomalies. The outcomes of the experimental study are substantiated by validation with real hyperspectral data. The results obtained highlight the relevance that the impact of signal contamination, assessed with respect to different system parameters, may have for practical applications. This paper represents a starting point for the development of detection performance forecasting models that consider signal contamination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.