Abstract

Although the interaction mechanism between shock waves and cells is critical for advancing the medical applications of shock waves, we still have little understanding about it. This work aims to study the response of diseased cells subjected to lipid peroxidation to the nanojet from shock wave-induced bubble collapse by using the coarse-grained molecular dynamics simulation. Factors considered in the simulations include the shock velocity (up), movement time of piston (τp), bubble size (R), and peroxidation level of membranes. Here, we mainly focus on the role of peroxidation levels, that is, the degree (%) and the distribution of oxidized lipids in membranes. The results indicate that the shock damage threshold (up at which the pore in membranes is formed) of peroxidation membranes is less than that of normal membranes and decreases with the peroxidation degree. Importantly, the distribution of oxidized lipids has more effect on the damage threshold than the peroxidation degree. The threshold of membrane with 33% localized oxidized lipids is lower than that of membrane with 50% average oxidized lipids. The results can be explained by the stretching modulus (κs) and bending modulus (κb) of cell membranes. For example, the κb value (4.3 × 10-20 J) of 100% peroxidation membrane is about half of that (8.4 × 10-20 J) of a membrane without peroxidation. A lower modulus means high deformation under the same impact. Further analysis shows that peroxidation introduces a polar hydrophobic group to the tail of phospholipids that increases the hydrophilicity of tails and warps the tail of phospholipids toward the membrane-water interface, resulting in looser accumulation. This can be confirmed by the increased average phospholipid area with peroxidation levels. Indeed, most of the pores formed during the shock can heal. However, the permeation of water molecules across the healing membrane still increased. All these membrane-level information obtained from this study will be useful for improving the biomedical applications of shock waves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.