Abstract

The increase in energy consumption that occurs in the residential sector implies a higher consumption of natural resources and, therefore, an increase in pollution and a degradation of the ecosystem. An optimal use of materials in the thermal envelope, together with efficient measures in the passive architectural design process, translate into lower energy demands in residential buildings. The objective of this study is to analyse and compare, through simulating different models, the impact of the shape factor on energy demand and CO2 emissions depending on the type of construction solution used in the envelope in a cold oceanic climate in South Chile. Five models with different geometries were considered based on their relationship between exposed surface and volume. Additionally, three construction solutions were chosen so that their thermal transmittance gradually complied with the values required by thermal regulations according to the climatic zone considered. Other parameters were equally established for all simulations so that their comparison was objective. Ninety case studies were obtained. Research has shown that an appropriate design, considering a shape factor suitable below 0.767 for the type of cold oceanic climate, implies a decrease in energy demand, which increased when considering architectural designs in the envelope with high values of thermal resistance.

Highlights

  • Energy consumption is reflected in the gross domestic product (GDP) of a country

  • The results obtained in the models for (i) energy demand, (ii) CO2 emissions and (iii) energy cost are shown below

  • This research showed an appropriate design considering a SFv suitable for cold oceanic climates, which implied a decrease in energy demand and CO2 emissions

Read more

Summary

Introduction

Energy consumption is reflected in the gross domestic product (GDP) of a country. There is a close relationship between GDP and the required electrical energy, which increases every year at the country level and is sustained [1]. The world has created a legal framework to respond to the need to provide energy in the context of sustainable development, given the threats [2]. A building, especially in the operation stage, can be a great potential consumer of energy, and only using measures and strategies in the design stage which involve insignificant increases in construction costs and significant benefits in energy demand (or energy need [4]) and emission reduction can significantly affect its energy consumption [5]

Objectives
Methods
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.