Abstract

AbstractThe urban land surface has a significant impact on local urban heat island effects and air quality. In addition, it influences the atmospheric conditions and air quality in the downwind cities. In this study, the impact of Shanghai urban land surface forcing on weather conditions and air quality over Kunshan was investigated using the Weather Research and Forecasting model coupled with a multilayer urban canopy model and the Community Multiscale Air Quality model. Two simulations were conducted to identify the impact of upstream effects with and without upstream urban land surfaces in control and sensitivity experiments. The results show that the near‐surface temperature and boundary layer height over Kunshan increased significantly with the appearance of the upstream urban land surface. Horizontal transport of O3 and its precursors, from Shanghai to Kunshan, are suppressed in the lower boundary layer but are strengthened in the upper boundary layer because of strong urban heat island circulation. As a result, O3 chemical production is decreased in the lower boundary layer of Kunshan but is increased in the upper boundary layer. On average, daytime O3 concentrations over Kunshan are decreased by approximately 2 ppbv in the lower boundary layer but are increased by as much as 40 ppbv in the upper air.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.