Abstract

Urinary tract infection (UTI) is one of the most prevalent bacterial infections in the world affecting the bladder and the kidney. Escherichia coli (E. coli) is the main causative agent of 80–90% of community-acquired UTIs, about 40% of nosocomial UTIs, and 25% of recurrent UTIs. The field of proteomics has emerged as a great tool to analyze expressed proteins to identify possible biomarkers associated with many pathological states and, to the same extent, those associated with bacterial pathogenesis and their ability to cause recurrent infections. Here, in a descriptive cross-sectional pilot study, we employed proteomic techniques to investigate the effects of environmental stress on protein profiles of E. coli simulated by sequential passaging of samples from patients with UTIs to screen for unique proteins that arise under stressful environment and could aid in the early detection of UTIs. Four urine samples were collected from individuals with recurrent UTI and sequentially subcultured; protein samples were extracted from bacterial pellets and analyzed using 2-dimensional gel electrophoresis (2DGE). Protein spots of interest arising from changes in the protein profile were analyzed using liquid chromatography-mass spectrometry (LC-MS/MS) and matched against known databases to identify related proteins. We identified ATPB_ECOBW, ASPA ECOLI, DPS ECOL6, and DCEB ECOLI as proteins associated with higher passaging. We concluded that passaging resulted in identifiable changes in the protein profile of E. coli, namely, proteins that are associated with survival and possible adaptation of bacteria, suggestive of factors contributing to antibiotic resistance and recurrent UTIs. Furthermore, our method could be further used to identify indicator-protein candidates that could be a part of a growing protein database to diagnose and identify causative agents in UTIs.

Highlights

  • Urinary tract infection (UTI) is the second most prevalent infection in humans causing inflammation of the urinary system encompassing the ureters, bladder, urethra, and kidneys

  • We aimed to investigate the changes in the protein profile of E. coli bacteria forced into adaptation under the stressful environment of sequential passaging and to take the first step to identify unique proteins that could possibly be used in the future for the early diagnosis of UTIs caused by E. coli [23]

  • We suggest that samples from recurrent and atypical UTIs should be compared to passaged reference bacteria to further validate this method

Read more

Summary

Introduction

Urinary tract infection (UTI) is the second most prevalent infection in humans causing inflammation of the urinary system encompassing the ureters, bladder, urethra, and kidneys. It is predominantly caused by uropathogenic Escherichia coli (E. coli) and is regarded amongst the most widespread infections in humans affecting both men and women [1,2,3]. Due to the anatomical structures of the female urinary tract, UTIs are more prevalent in females than males [1]. A higher risk of recurrent UTI affects 20% of hospitalized geriatric patients

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call