Abstract

This paper investigates the effect of sensor placement on the observability and LQG control of a thermoacoustic model. This model describes combustion instability in a one-dimensional combustor, called a Rijke tube. The transfer function describing this model is transcendental because of the time delay terms in the heat release dynamics. We apply Padé approximation to achieve a finite-dimensional transfer function and truncate the system by neglecting states with low Hankel singular values. We then analyze the impact of the placement and number of sensors on the observability of each mode of the resulting reduced-order model. Next, we design an LQG controller for suppressing pressure oscillations in the simplified thermoacoustic system. We find that placing sensors near the model’s pressure nodes slows down the rate at which LQG control attenuates pressure oscillations, increases the control effort required for this attenuation, and worsens the controller’s robustness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.