Abstract

The dielectric screening property of a semiconductor is very crucial for the electrical characteristics of a MOSFET, and which can be described mathematically by Poisson equation via the permittivity. While the theory and experiments have corroborated the permittivity reduction of nanoscale Si, this paper studies the electrical characteristics of MOSFETs considering the reduced channel permittivity by quantum transport simulations. It is found that the channel permittivity reduction may mitigate the short-channel effects, showing subthreshold swing improvement and threshold voltage shift of MOSFETs in nanoscale. Compared to quantization effects, the positive and negative impacts of the channel permittivity reduction on the devices in particularly nanoscale have been investigated. This paper elucidates the necessity of considering semiconductor permittivity reduction for nanoscale device design and simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.