Abstract

BackgroundPartial or total release of the posterior cruciate ligament (PCL) is often performed intraoperatively in cruciate-retaining total knee arthroplasty (CR-TKA) to alleviate excessive femoral rollback. However, the effect of the release of selected fibers of the PCL on femoral rollback in CR-TKA is not well understood. Therefore, we used a computational model to quantify the effect of selective PCL fiber releases on femoral rollback in CR-TKA. MethodsComputational models of 9 cadaveric knees (age: 63 years, range 47 to 79) were virtually implanted with a CR-TKA. Passive flexion was simulated with the PCL retained and after serially releasing each individual fiber of the PCL, starting with the one located most anteriorly and laterally on the femoral notch and finishing with the one located most posteriorly on the medial femoral condyle. The experiment was repeated after releasing only the central PCL fiber. The femoral rollback of each condyle was defined as the anterior-posterior distance between tibiofemoral contact points at 0° and 90° of flexion. ResultsRelease of the central PCL fiber in combination with the anterolateral (AL) fibers, reduced femoral rollback a median of 1.5 [0.8, 2.1] mm (P = .01) medially and by 2.0 [1.2, 2.5] mm (P = .04) laterally. Releasing the central fiber alone reduced the rollback by 0.7 [0.4, 1.1] mm (P < .01) medially and by 1.0 [0.5, 1.1] mm (P < .01) laterally, accounting for 47 and 50% of the reduction when released in combination with the AL fibers. ConclusionsReleasing the central fibers of the PCL had the largest impact on reducing femoral rollback, either alone or in combination with the release of the entire AL bundle. Thus, our findings provide clinical guidance regarding the regions of the PCL that surgeons should target to reduce femoral rollback in CR-TKA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call