Abstract

Instability of organic–inorganic halide perovskite solar cells (PSCs) under continuous light illumination in ambient air atmosphere has been studied. Efforts have been made to improve the PSC stability by chemical engineering of perovskite or device encapsulation. However, most of the attention has been directed to the perovskite material itself rather than its dynamic interaction with selective contacts. In this study we report on the impact of selective contacts on long-term stability. When the unencapsulated PSC with mesoscopic structure, bl-TiO2/mp-TiO2/CH3NH3PbI3 (MAPbI3)/spiro-MeOTAD, was illuminated in ambient air atmosphere, photocurrent rapidly declined despite little change in absorbance. Impedance spectroscopic measurements confirmed that a new semicircle appeared at high frequency with exposure time, which was indicative of formation of a new layer at the MAPbI3/spiro-MeOTAD interface inhibiting charge collection. The device prepared in ambient atmosphere was encapsulated in N2 using a UV-cura...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call