Abstract
AbstractIn this paper, the effects of spring soil moisture (SM) anomalies in the mid‐latitudes on the atmospheric circulation in summer over the Northern Hemisphere (NH) are investigated. The results show that there are two regions of maximum interannual variability of the spring SM in the mid‐latitudes, which are located in central North America (CNA) and Europe and central Asia (ECA). In addition, the interannual variation of spring SM anomalies between CNA and ECA exhibits a seesaw pattern. The CNA–ECA seesaw pattern of the spring SM anomalies leads to the surface heat anomalies having opposite phases in CNA and ECA from spring to summer, which subsequently cause the opposite phase of baroclinicity anomalies in spring. The anomalous meridional temperature advections in spring cause the baroclinicity anomalies to have the same phase around CNA and ECA in summer. Corresponded with the same phase of baroclinicity anomalies, the anomalous centers of the stationary Rossby wave train (RWT) and Rossby wave source (RWS) have the same phase in CNA and ECA in summer. Through analysis of the vorticity budgets, the maintenance mechanism of the RWT in summer is considered as a positive feedback that anomalous meridional winds characterized by a RWT, transport the mean absolute vorticity and subsequently lead to an anomalous RWS, which in turn maintains the stationary RWT. Numerical experiments further demonstrate the effects of CNA–ECA seesaw pattern of spring SM anomalies on stationary RWT and RWS in summer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.