Abstract

Riverbank filtration (RBF) is a reliable water purification technique that has proven to be suitable for the removal of organic micropollutants. Its removal efficiency and dependency on a variety of factors such as redox conditions, temperatures, geology, travel times, level of initial micropollutant concentrations and seasonality were investigated during three seasonal sampling campaigns. Two anoxic (silty sand, Ems river) and two oxic (gravel, Ruhr river) RBF sites in Germany with different travel distances (42–633 m) were studied. Micropollutant concentrations were examined using a large-volume direct injection liquid chromatography method coupled to high-resolution mass spectrometry. Seasonal differences in micropollutant concentrations in the rivers were observed for chlorotolurone, diclofenac, terbuthylazine, mecoprop-P, MCPA (2-methyl-4-chlorophenoxyacetic acid) and propyphenazone. Redox dependencies in RBF were only found for sulfamethoxazole, propyphenazone, terbuthylazine and carbamazepine. Data for oxazepam, tramadol, N-desmethyl-tramadol, tilidin-desmethyl, carbamazepine and carbendazim indicate a required minimum travel distance of e.g. 100–200 m for the complete removal. Notably, travel time did not seem to be a substantial factor for their removal. High conductivity aquifers are also well suited for micropollutant removal. Seasonal initial concentration level variations showed no impact on the resulting abstraction well concentrations. Although the calculated removal efficiencies varied, they proved to be improper for seasonal raw water quality comparison. Knowledge of micropollutant behavior in riverbank filtration was broadened and RBF proved to be well suited for effective micropollutant reduction throughout the year, yet for a complete removal long travel distances or further technical purification steps are required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.