Abstract

The step-flow and spiral growth of a multicomponent crystal are considered from vapors, taking into account the different possible Schwoebel barriers for each component within the Burton-Cabrera-Frank model. Analytic expressions for the final growth rates of such a multicomponent crystal are determined while considering the kinetic properties of all the individual components and growth conditions. Possible instabilities inherent in the presence of several components are studied, and a stability criterion for the multicomponent case is proposed. It is shown that, in certain cases, nucleation of nanoislands of pure components behind the moving steps can initiate, significantly distorting the growth process. The criterion for the occurrence of such an unstable regime is found.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call