Abstract

Respiratory motion in Positron Emission Tomography leads to reduced image quality, influencing this way the quantitative accuracy of PET measurements, as shown in numerous studies. However, only few results have been published on its impact on lesion detection. This study intends to evaluate the impact of motion correction on the detection of small lesions (between 8 and 12 mm diameter) using a Computed-Aided Detection (CAD) system on FDG whole-body simulated PET images. We evaluate two types of motion correction techniques, both using motion fields derived from the reconstruction of gated PET images. The first technique consists in averaging the coregistered gated reconstructed PET images, while the second method integrates the motion fields during the iterative reconstruction process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.