Abstract
Despite the importance of Rayleigh-product multiple-input multiple-output channels and their experimental validations, there is no work investigating their performance in the presence of residual additive transceiver hardware impairments, which arise in practical scenarios. Hence, this paper focuses on the impact of these residual imperfections on the ergodic channel capacity for optimal receivers, and on the ergodic sum rates for linear minimum mean-squared-error (MMSE) receivers. Moreover, the low- and high-signal-to-noise ratio cornerstones are characterized for both types of receivers. Simple closed-form expressions are obtained that allow the extraction of interesting conclusions. For example, the minimum transmit energy per information bit for optimal and MMSE receivers is not subject to any additive impairments. In addition to the exact analysis, we also study the Rayleigh-product channels in the large system regime, and we elaborate on the behavior of the ergodic channel capacity with optimal receivers by varying the severity of the transceiver additive impairments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.