Abstract

BackgroundReproductive aging may impact the vaginal microbiome and genital tract mucosal immune environment and contribute to genital tract health in women living with and at-risk for HIV infection.MethodsA cross-sectional study of 102 HIV+ (51 premenopausal, 51 postmenopausal) and 39 HIV-uninfected (HIV-) (20 premenopausal, 19 postmenopausal) women was performed in Bronx and Brooklyn, NY. Cervicovaginal lavage (CVL) was collected for quantification of innate antimicrobial activity against E. coli, HSV-2 and HIV and immune mediators by Luminex and ELISA. Microbiome studies by qPCR and 16S rRNA sequencing were performed on vaginal swabs.ResultsHIV+ postmenopausal compared to premenopausal participants had lower median E. coli bactericidal activity (41% vs. 62%, p = 0.001), lower median gene copies of Lactobacillus crispatus (p = 0.005) and Lactobacillus iners (p = 0.019), lower proportions of Lactobacillus iners, higher proportions of Gardnerella and Atopobium vaginae and lower levels of human beta defensins (HBD-2, HBD-3) and secretory leukocyte protease inhibitor (SLPI), p<0.001. HSV-2 inhibitory activity was higher in HIV+ postmenopausal compared to premenopausal participants (37% vs. 17%, p = 0.001) and correlated with the proinflammatory molecules interleukin (IL) 6, IL-8, human neutrophil peptide (HNP) 1–3, lactoferrin and fibronectin. Similar trends were observed in HIV- postmenopausal compared to premenopausal participants. HIV inhibitory activity did not differ by reproductive status in the HIV+ participants but was significantly higher in HIV- postmenopausal compared to premenopausal participants and in participants with suppressed plasma viral load, and inversely correlated with gene copies of G. vaginalis and BVAB2. A significant proportion of HIV+ participants on ART exhibited HIV enhancing activity.ConclusionsHIV+ postmenopausal compared to premenopausal participants have less CVL E. coli bactericidal activity, reflecting a reduction in Lactobacilli and a greater proportion of Gardnerella and A. vaginae, and more HSV-2 inhibitory activity, reflecting increased mucosal inflammation. The effect of menopause on mucosal immunity was greater in HIV+ participants, suggesting a synergistic impact. Promotion of a lactobacillus dominant vaginal microbiome and reduced mucosal inflammation may improve vaginal health and reduce risk for shedding of HIV and potential for HIV transmission in HIV+ menopausal women.

Highlights

  • Menopause may be a time of reduced genital tract health reflecting changes in the vaginal microbiome and mucosal environment

  • HIV+ postmenopausal compared to premenopausal participants had lower median E. coli bactericidal activity (41% vs. 62%, p = 0.001), lower median gene copies of Lactobacillus

  • Targeted supplemental funding for specific projects is provided by the National Institute of Dental and Craniofacial Research (NIDCR), the National Institute on Alcohol Abuse and Alcoholism (NIAAA), the National Institute on Deafness and other Communication Disorders (NIDCD), and the National Institutes of Health (NIH) Office of Research on Women’s Health

Read more

Summary

Introduction

Menopause may be a time of reduced genital tract health reflecting changes in the vaginal microbiome and mucosal environment. Previous studies in HIV uninfected (HIV-) women have demonstrated a reduction in lactobacilli with an increase in diverse anaerobes in postmenopausal compared to premenopausal women.[1, 2] Changes in immune cell phenotype and function, disruption of epithelial integrity, reduction in protective immune mediators and increased expression of pro-inflammatory genes have been described.[1,2,3,4,5] Together, these changes may increase the risk of acquiring HIV and, in HIV-infected (HIV+) women, promote viral shedding and transmission (Fig 1).[6,7,8,9,10] Among incident US HIV infections in 2015, 17% occurred in persons >50 years of age and approximately 45% of people living with HIV in the US are aged 50, [11, 12] underscoring the importance of studying the impact of menopause on the cervicovaginal mucosal environment and its link to HIV acquisition and transmission. Reproductive aging may impact the vaginal microbiome and genital tract mucosal immune environment and contribute to genital tract health in women living with and at-risk for HIV infection

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.