Abstract

Increased circulating lipopolysaccharide (LPS) results from heat stress (HS) and bacterial infection, both of which are associated with reduced female fertility. Specific effects of low-level, repeated LPS exposure on the ovary are unclear, as many studies utilize a bolus model and/or high dosage paradigm. To better understand the effects of chronic LPS exposure on ovarian signaling and function, post-pubertal gilts (n = 20) were orally administered altrenogest for 14 d to synchronize the beginning of the follicular phase of the ovarian cycle. For 5 d after synchronization, gilts (163 ± 3 kg) received IV administration of LPS (0.1 µg/kg BW, n = 10) or saline (CT, n = 10) 4× daily. Blood samples were obtained on days 1, 3, and 5 of LPS treatment. Follicular fluid was aspirated from dominant follicles on day 5, and whole ovarian homogenate was used for transcript and protein abundance analysis via quantitative real-time PCR and western blotting, respectively. There were no treatment differences detected in rectal temperature on any day (P ≥ 0.5). Administering LPS increased plasma insulin (P < 0.01), LPS-binding protein (LBP; P < 0.01), and glucose (P = 0.08) on day 1, but no treatment differences thereafter were observed (P = 0.66). There were no treatment differences in follicular fluid concentration of LBP or 17β-estradiol (P = 0.42). Gilts treated with LPS had increased abundance of ovarian TLR4 protein (P = 0.01), but protein kinase B (AKT) and phosphorylated AKT (pAKT) were unchanged and no effect of LPS on components of the phosphatidylinositol 3 kinase (PI3K) pathway were observed. There was no impact of LPS on ovarian abundance of STAR or CYP19A1, nor ESR1, LDLR, CYP19A1, CYP17A1, or 3BHSD. In conclusion, repeated, low-level LPS administration alters inflammatory but not steroidogenic or PI3K signaling in follicular phase gilt ovaries.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.