Abstract

Optimal bulk-heterojunction (BHJ) morphology is crucial for efficient charge transport and good photovoltaic performance in organic solar cells (OSCs). Yet, the correlation between chemical structures of nonfullerene acceptors (NFAs) and molecular interaction in the BHJ blends remains opaque. Herein, we study three isomeric NFAs referred to as MQ1-x (x = β, γ, or δ) that shared an asymmetric selenophene-fused heteroheptacene backbone end-capped by two monochlorinated end groups. Remarkably, miscibility between the polymer donor of PM6 and MQ1-x successively elevates as the chlorine atoms move from β-, to γ-, to δ-position of terminals. Combined with the varied molecular crystallinity of these NFAs, diverse BHJ morphologies are observed in their blend films. As a result, the MQ1-δ-based devices present the highest PCE of 12.08% owing to the efficient charge dissociation and transport induced by the compact molecular packing and optimal BHJ morphology. Our investigation provides a new insight in the material design that has a good balance in molecular packing and film morphology for high-performance OSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.