Abstract

A two-step sequential hydrothermal liquefaction (SEQHTL) model for simultaneous extraction of polysaccharide at the first step followed by bio-oil in the second was established. The effects of reaction temperature, residence time, and biomass/water ratio on the product distribution of each SEQHTL step were evaluated. Maximum yield (32wt.%) of polysaccharides was obtained at 160°C, 20min and 1:9 biomass/water ratio. Considering the operation cost and bio-oil yield (>30%); 240°C, 20min and 1:9 biomass/water ratio was preferred as ideal SEQHTL condition for bio-oil extraction. SEQHTL always produced ∼5% more bio-oil and ∼50% less bio-char than direct hydrothermal liquefaction (DHTL). Free fatty acid content of the bio-oils exhibited a sharp decrease with increase in temperature. Comparative analysis of the energy input and net energy balance showed that SEQHTL requires ∼15% less MJ/kg bio-oil than DHTL. Energy recovery rate for SEQHTL is nearly 4% higher than the DHTL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.