Abstract

At bit rates comparable with the Brillouin shift, i.e. higher than 10 Gbit/s, the signal and the Brillouin backscattered spectra partially overlap. This implies an interaction between different scattering phenomena occurring through out the optical fiber. In particular we believe that an evaluation of how Rayleigh backscattered components of the modulated signal are subjected to Stokes gain is required. This interaction may lead to an increased backscattered power, which in turn will affect Brillouin threshold estimation. We experimentally verified a decrease of Stimulated Brillouin Scattering (SBS) threshold for 10 Gb/s NRZ-OOK signals with respect to theoretical predictions. Simulations carried out with a numerical model of SBS, accounting for Rayleigh contributions, well predict measured backscattered power levels. On the other hand we also experimentally verified that this SBS threshold decrease does not degrade transmission system performance. Indeed, measured BER curves put into evidence a penalty reduction for signal powers just before the saturation regime, which should be usefully taken into consideration in optical systems power budget planning.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.