Abstract

The impact of cropping on the hydrology and fertility of Vertosols in the northern Darling Basin (average annual rainfall >550 mm) has received much attention, together with the constraints placed on crop growth by naturally occurring subsoil salt stocks. These factors have not been quantified in the drier (450–550 mm), marginal cropping areas to the west. With widespread adoption of zero tillage technology and the potential for large increases in the capture and storage of rainfall in good seasons, mobilisation of salt could be exacerbated should crop water use be constrained by salt toxicity and/or nutrient deficiency. We investigated the size of salt stocks, historic deep drainage, and nutrient depletion under continuous cropping in the Grey and Brown Vertosols of the Walgett and Coonamble districts of north-western NSW. Soils collected from seven paired sites (cropped v. control native vegetation) showed chloride concentrations >500 mg/kg within 0–1.2 m, high exchangeable sodium percentage (~30%) at depth and deficiency in phosphorus, manganese and zinc. Soil total nitrogen decreased from an average stock of 4.9 t/ha at a rate of 0.008 t/ha.year under cropping within 0–0.1 m and soil carbon stocks decreased from 39 t/ha by 0.20 t/ha.year within 0–0.5 m.. Despite low rainfall, high evaporation and the large water-holding capacity of the cracking clays, there were significant downward shifts in chloride concentrations under cropping. Estimates of deep drainage under continuous cropping using chloride mass balance, chloride-front displacement and crop water-balance modelling with the Agricultural Production Systems Simulator (APSIM) generally agreed (range 0.1–2% of average annual rainfall). Simulations suggested that deep drainage may be increased 5–10-fold under zero-tillage winter cropping due to enhanced capture of rainfall by zero tillage compared with traditional practices. The associated flushing of salt from the root-zone together with correction of nutrient deficiency would enhance crop water use and productivity. Current methods indicate little storage in the subsoil for future deep drainage and that hydraulic conductivity is very low. Hence, the long-term effects of any increase in drainage rates, due to changes in cropping practices and/or climate, on the potential for salinisation of groundwater or transient water logging of the surface, are equivocal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call