Abstract

Abstract Soil catenas integrate and amplify gravity transfer and differentiation processes of eluviation and illuviation in soil profiles. We quantified differences in these redistribution processes along granitic catenas across an arid to sub-humid climate gradient in Kruger National Park, South Africa. We measured soil properties in nine catenas sampled from three areas receiving annual rainfall of 470 mm (arid zone), 550 mm (semi-arid zone) and 730 mm (sub-humid zone). As rainfall increased, kaolinite replaced smectite as the dominant clay mineral in all landscape positions across the catenas. Toeslopes showed the strongest evidence of this transition with an excess of smectite in the arid catenas but complete prevalence of kaolinite in toeslopes of sub-humid catenas. The concentration and distribution of clay along the catenas were dependent on landscape position as well — soil profiles at and near the crests were clay depleted (as low as 1%) while those at the toeslopes had much more clay (up to 60%). Clay redistribution along catenas was sensitive to climate with the least amount of redistribution occurring in the dry sites and the most occurring in the wet sites. As a consequence, the sub-humid catenas had clay accumulation only in a small part of the toeslopes while the bulk of their length was represented by highly leached soils. In contrast, arid zone catenas showed little clay redistribution and semi-arid sites displayed the greatest within-catena clay redistribution and preservation. Clay movement and storage conditioned other soil properties such as CEC, base cation distribution, base saturation and pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.