Abstract

L-band passive microwave remote sensing of ocean surfaces is hampered by uncertainties due to the contribution of precipitation. However, modeling and correcting rain effect are complicated because all the precipitation contributions from the atmosphere and sea surface, including the rain effect in the atmosphere, water refreshing, rain-perturbed sea surface, and rain-induced local wind, are coupled. These rain effects significantly alter L-band microwave satellite measurements. This study investigates the impact of precipitation on the satellite measured brightness temperature (TB) and proposes a correction method. The results show that the rain-induced TB increase is approximately 0.5–1.4 K in the atmosphere, depending on the incidence angle and polarization. Moreover, the rain effect on sea surface emissions is more significant than that in the atmosphere. The result shows that rain effects on sea surface emissions are higher than 3 K for both polarizations when the rain rate is higher than 20 mm/h. We validate the rain effect correction model based on Soil Moisture Active Passive (SMAP) observations. The results show that the TBs at the top of the atmosphere (TOA) simulated by the model are in a good agreement with the SMAP observations, with root-mean-square errors (RMSEs) of 1.137 and 1.519 K for the horizontal and vertical polarizations, respectively, indicating a relatively high accuracy of the established model. Then, a correction model is applied to sea surface salinity (SSS) retrieval for analysis, and the results show that the developed model corrects the underestimation in SSS retrieval. Finally, the rain effect correction model is validated with Aquarius observations in three regions, and it is found that the RMSEs of the corrected TOA TBs range from 1.013 to 1.608 K, which is higher than those without rain effect correction (RMSEs range from 2.078 to 3.894 K). Overall, the model developed in this study provides relatively a good accuracy for rain effect correction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call