Abstract

Abstract The sensitivity of convection-allowing forecasts over the continental United States to radar reflectivity data assimilation (DA) frequency is explored within the Gridpoint Statistical Interpolation (GSI)-based ensemble–variational (EnVar) system. Experiments with reflectivity DA intervals of 60, 20, and 5 min (RAIN60, RAIN20, and RAIN5, respectively) are conducted using 10 diverse cases. Quantitative verification indicates that the degree of sensitivity depends on storm features during the radar DA period. Five developing storms show high sensitivity, whereas five mature or decaying storms do not. The 20-min interval is the most reliable given its best overall performance compared to the 5- and 60-min intervals. Diagnostics suggest that the differences in analyzed cold pools (ACPs) among RAIN60, RAIN20, and RAIN5 vary by storm features during the radar DA period. Such ACP differences result in different forecast skills. In the case where RAIN20 outperforms RAIN60 and the case where RAIN5 outperforms RAIN20, assimilation of reflectivity with a higher frequency commonly produces enhanced and widespread ACPs, promoting broader storms that match better with reality than a lower frequency. In the case where RAIN5 performs worse than RAIN20, the model imbalance of RAIN5 overwhelms information gain associated with frequent assimilation, producing overestimated and spuriously fast-moving ACPs. In the cases where little sensitivity to the reflectivity DA frequency is found, similar ACPs are produced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call