Abstract

We evaluated quantitation accuracy of the specific binding ratio (SBR) and specific uptake ratio (SUR) of dopamine transporter for various correction methods by using a novel three-dimensional striatum digital brain (3D-SDB) phantom comprised of segments containing the striatum, ventricle, brain parenchyma, and skull bone extracted from T2-weighted MR images. A process image was reconstructed by projection data sets with blurring, scatter, and attenuation from 3D-SDB phantom data. A 3D-iterative reconstruction algorithm was used without correction (OSEM), or with scatter (SC), attenuation (AC), AC + SC (ACSC), AC + resolution recovery (RR; ACRR), SC + RR (SCRR), AC + SC + RR (ACSCRR), AC + SC + RR + partial volume (PVC; ACSCRRP), and AC + SC + RR + PVC + ventricle (ACSCRRPV). Data were then quantified using SBR and SUR. Differences between measured and true SBR values were (in order): ACSCRR < ACSC < ACRR < AC < SCRR < SC < OSEM: the maximal error was 45.3%. The trend of differences between measured and true SUR values was similar to that of SBR; maximal error was 65%. The ACSCRR-corrected SUR, which was closer to the true value, was underestimated by 30.4%. However, the ACSCRRP-corrected SUR was underestimated by a maximum of 22.5%. The SUR in the ACSCRRPV was underestimated by 6.2%. The accuracy of quantitation was improved using various types of compensation and correction. Accuracy improved more for the SUR when PVC and ventricle correction were added.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call