Abstract
Given the current importance of using biochar for water treatment, it is important to study the physical-chemical properties to predict the behavior of the biochar adsorbent in contact with adsorbates. In the present research, the physical and chemical characteristics of three types of biochar derived from banana leaves were investigated, which is a poorly studied raw material and is considered an agricultural waste in some Latin American, Asian, and African countries. The characterization of non-modified biochar samples pyrolyzed at 300, 400, and 500 °C was carried out through pH, scanning electron microscopy, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and specific surface area measurements. The adsorption properties of banana leaf-derived biochar were evaluated by ammonium ion adsorption experiments. The results demonstrated that the pyrolysis temperature has a large impact on the yield, structure, elemental composition, and surface chemistry of the biochar. Biochar prepared at 300 °C is the most efficient for NH4+ adsorption, achieving a capacity of 7.0 mg of adsorbed NH4+ on each gram of biochar used, while biochar samples prepared at 400 and 500 °C show lower values of 6.1 and 5.6 mg/g, respectively. The Harkins-Jura isotherm model fits the experimental data best for all biochar samples, demonstrating that multilayer adsorption occurs on our biochar.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.