Abstract

Photovoltaic cell and module manufactures optimise their products according to power measurements performed at a set of standard-test conditions. A key parameter for the financing of a solar project is yield under field or realistic conditions. Field testing modules is time consuming and costly. Hence, we develop a methodology for simulating PV module yield based on the optical, thermal and electrical properties of the components, and the module configuration regarding the cell spacing, interconnection and module layers. With our procedure, we model the performance of standard, half cell and encapsulant free modules in different locations. We present results using our cell to module yield framework for 16 different locations in Australia based on one-minute ground measured solar irradiance and ambient temperature values. We find low-light irradiance losses are directly correlated to the number of cloudy days at a given site. The majority of fielded losses are due to temperature effects, which can be predicted by the average temperature at 3 p.m. We note that wind speed is not accounted for and it will be incorporated in future studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.