Abstract

The rapid integration of intermittent renewables such as wind and solar into the power grid tends to degrade the system's reliability. Therefore, energy storages are required to satisfy consumer demand continuously by compensating for the frequent fluctuations of renewable power generation. In this paper, the impact of integrating pumped storage on the adequacy of renewable rich power generating systems is investigated. The variations of generation system adequacy indices are analyzed for different pumped storage capacities and storage levels. The adequacy indices are obtained using sequential Monte Carlo simulation for the IEEE reliability test system-79 which is modified by integrating a pumped storage and renewable generators. According to the results, the generating system adequacy is significantly affected by both the pumped storage capacity and the storage level. When a pumped storage is integrated, the generation system failures in spring, fall, summer and winter are found to be reduced by 80.4 %, 79.1 %, 58.9 % and 55.6 % respectively. Moreover, the equivalent capacity of a 300 MW pumped hydro plant with 1000 MWh storage level is found to be 216 MW in terms of a conventional generating unit. These results show that a significant level of reliability improvement can be obtained by pumped storage plants, especially in renewable rich power systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call