Abstract

The impact of pulsed Nd:YAG (neodymium-doped yttrium/aluminium garnet) laser irradiation on the marine biofilm-forming bacteria Pseudoalteromonas carrageenovora during two growth stages (log phase and stationary phase) and under two stresses (reduced temperature and nutrient limitation) was investigated. Bacteria were exposed to a laser fluence of 0.1 J x cm(-2) for 5, 10, and 15 min with a peak power of 20 MW x cm(-2), a pulse width of 5 ns, and an average power of 1 W x cm(-2) with a repetition rate of 10 Hz. The mortality of bacteria immediately after the irradiation as well as after a set period of time was determined. Mortality was higher among log-phase bacteria (72%) than bacteria in the stationary phase (51%) and those grown under nutrient limitation (51%). Bacteria grown at reduced temperature had a mortality of 49%. However, the differences in cell density of log-phase, stationary-phase, nutrient-limited, and low-temperature irradiated samples compared with controls after 5 h of incubation were 96, 93, 94, and 86%, respectively. The mortality values suggest that the same laser fluence has different degrees of effectiveness, depending on the physiological state of the bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call