Abstract

Pulse thermography (PT) is a nondestructive testing method in which an energy pulse is applied to a surface while the surface temperature evolution is measured to detect sub surface defects and estimate their depth. This nondestructive test method was developed on the assumption of instantaneous surface heating, but recent work has shown that relatively long pulses can be used to accurately determine defect depth in polymers. This paper examines the impact of varying input pulse length on the accuracy of defect depth quantification as a function of the material properties. Simulations using both thermoplastics and metals show that measurement error is dependent on a nondimensionalized pulse length. The simulation results agree with experimental results for three-dimensional (3D) printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) components. Analysis and experiments show that defects can be accurately detected with minor modification to the standard methods as long as the pulse ends before the characteristic defect signal is detected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call