Abstract

To evaluate the inhibition effects of pseudolignin to enzymatic hydrolysis of cellulose in comparison to lignin, enzymatic mild acidolysis lignin (EMAL) was isolated from poplar after an 8 min pretreatment at 170 °C using 0.5% H2SO4. Fourier transform infrared (FT-IR) and 13C NMR characterization revealed that the poplar lignin was partially degraded during the pretreatment and did not contain detectable amounts of pseudolignin. Holocellulose was treated with varying amounts of pseudolignin and/or EMAL dissolved in p-dioxane and then dried. The treated and control holocellulose was then treated to a standard cellulase treatment, and the results from enzymatic hydrolysis of these samples showed that the dilute acid-pretreated lignin inhibited hydrolysis in the initial stage but had a negligible impact on the overall cellulose-to-glucose conversion yield. In contrast, pseudolignin significantly reduced the overall enzymatic conversion yield of cellulose to glucose. This study suggests that pseudolignin form...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call