Abstract

Deep levels in 1.8 MeV proton irradiated n-type GaN were systematically characterized using deep level transient spectroscopies and deep level optical spectroscopies. The impacts of proton irradiation on the introduction and evolution of those deep states were revealed as a function of proton fluences up to 1.1 × 1013 cm−2. The proton irradiation introduced two traps with activation energies of EC - 0.13 eV and 0.16 eV, and a monotonic increase in the concentration for most of the pre-existing traps, though the increase rates were different for each trap, suggesting different physical sources and/or configurations for these states. Through lighted capacitance voltage measurements, the deep levels at EC - 1.25 eV, 2.50 eV, and 3.25 eV were identified as being the source of systematic carrier removal in proton-damaged n-GaN as a function of proton fluence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.