Abstract

Most low-birth weight infants experience extrauterine growth failure due to reduced nutrient intake as a result of feeding intolerance. The objective of this study was to determine whether prolonged enteral leucine supplementation improves lean growth in neonatal pigs fed a restricted protein diet. Neonatal pigs (n = 14-16/diet, 5 days old, 1.8 ± 0.3 kg) were fed by gastric catheter a whey-based milk replacement diet with either a high protein (HP) or restricted protein (RP) content or RP supplemented with leucine to the same level as in the HP diet (RPL). Pigs were fed 40 ml·kg body wt(-1)·meal(-1) every 4 h for 21 days. Feeding the HP diet resulted in greater total body weight and lean body mass compared with RP-fed pigs (P < 0.05). Masses of the longissimus dorsi muscle, heart, and kidneys were greater in the HP- than RP-fed pigs (P < 0.05). Body weight, lean body mass, and masses of the longissimus dorsi, heart, and kidneys in pigs fed the RPL diet were intermediate to RP- and HP-fed pigs. Protein synthesis and mTOR signaling were increased in all muscles with feeding (P < 0.05); leucine supplementation increased mTOR signaling and protein synthesis rate in the longissimus dorsi (P < 0.05). There was no effect of diet on indices of protein degradation signaling in any tissue (P > 0.05). Thus, when protein intake is chronically restricted, the capacity for leucine supplementation to enhance muscle protein accretion in neonatal pigs that are meal-fed milk protein-based diets is limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.