Abstract

Sea level rise (SLR) is one of the prime consequences of global warming as pointed out by the Intergovernmental Panel on Climate Change (IPCC). SLR adversely affects coastal regions; triggers coastal erosion, inundation, and affects the freshwater–seawater interface as well. This paper presents the results of a study in which a coastal aquifer under changing climate was simulated using a three-dimensional groundwater model. The study area covers a part of the coastal aquifer in Ernakulam district in the State of Kerala, India. Support Vector Machine (SVM) was used for projection of future sea levels under the representative concentration pathways (RCPs) 4.5 and 8.5, based on the projections of Phase 5 of the Coupled Model Intercomparison Project (CMIP5). Both thermosteric and halosteric components were taken into account in the projection of sea level. It was observed that sea level changes are significantly influenced by the halosteric effect. Results indicate that SLR in the year 2050 with respect to the levels in 2014 will be about 8.64 cm and 12.96 cm under RCPs 4.5 and 8.5, respectively. The repercussions of this rise in sea level on seawater intrusion into the coastal aquifer were evaluated by performing simulations with SEAWAT. Results of the study indicate that the effect of this SLR on seawater intrusion is negligible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call