Abstract

Probe-after-bump is the primary probing procedure for flip chip technology, since it does not directly contact the bump pad, and involves a preferred under bump metallurgy (UBM) step coverage on the bump pads. However, the probe-after-bump procedure suffers from low throughputs and high cost. It also delays the yield feedback to the fab, and makes difficult clarification of the accountability of the low yield bumped wafer between the fab and the bumping house. The probe-before-bump procedure can solve these problems, but the probing tips may over-probe or penetrate the bump pads, leading to poor UBM step coverage, due to inadequate probing conditions or poor probing cards. This work examines the impact of probing procedure on flip chip reliability, using printing and electroplating bumpings on aluminum and copper pads. Bump height, bump shear strength, die shear force, UBM step coverage, and reliability testing are used to determine the influence of probing procedure on flip chip reliability. The experimental results reveal that bump quality and reliability test in the probe-before-bump procedure, under adequate probing conditions, differ slightly from the corresponding items in the probe-after-bump procedure. UBM gives superior step coverage of probe marks in both probe-before-bump and probe-after-bump procedures, implying that UBM achieves greater adhesion and barrier function between the solder bump and the bump pad. Both printing and electroplating bump processes slightly influence all evaluated items. The heights of probe marks on the copper pads are 40–60% lower than those on the aluminum pads, indicating that the copper pad enhances UBM step coverage. This finding reveals that adequate probing conditions of the probe-before-bump procedure are suited to sort flip chip wafers and do not significantly affect bump height, bump shear strength, die shear force, or flip chip reliability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call