Abstract
Recent studies have shown that hyperspectral imaging (HSI) combined with neural networks can detect colorectal cancer. Usually, different pre-processing techniques (e.g., wavelength selection and scaling, smoothing, denoising) are analyzed in detail to achieve a well-trained network. The impact of post-processing was studied less. We tested the following methods: (1) Two pre-processing techniques (Standardization and Normalization), with (2) Two 3D-CNN models: Inception-based and RemoteSensing (RS)-based, with (3) Two post-processing algorithms based on median filter: one applies a median filter to a raw predictions map, the other applies the filter to the predictions map after adopting a discrimination threshold. These approaches were evaluated on a dataset that contains ex vivo hyperspectral (HS) colorectal cancer records of 56 patients. (1) Inception-based models perform better than RS-based, with the best results being 92% sensitivity and 94% specificity; (2) Inception-based models perform better with Normalization, RS-based with Standardization; (3) Our outcomes show that the post-processing step improves sensitivity and specificity by 6.6% in total. It was also found that both post-processing algorithms have the same effect, and this behavior was explained. HSI combined with tissue classification algorithms is a promising diagnostic approach whose performance can be additionally improved by the application of the right combination of pre- and post-processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.