Abstract

Dust present in poultry houses can contain high concentrations of microorganisms and has the potential to include pathogens from the litter. The objective of this study was to examine in vitro the potential for litter to dust transfer of aerobic bacteria, Salmonella, E. coli, and coliforms, and the role of the litter moisture on this process. Poultry litter was inoculated with 102 to 109 CFU/mL of Salmonella Typhimurium to evaluate litter to dust transfer of bacteria (Experiment 1). To evaluate the effect of litter moisture on litter to dust microbial transfer (Experiment 2), litter was inoculated with 109S. Typhimurium with increasing amounts of sterilized water added for moisture adjustment. Dust was generated by blowing air in a direct stream onto inoculated litter while simultaneously collecting dust through impingement. Following litter and dust sample collection, microbial analyses for aerobic plate counts (APC),Salmonella, E. coli, and coliforms were conducted. Both experiments were repeated 5 times and their data analyzed by one-way ANOVA and simple logistic regression. In Experiment 1, APC of litter (log10 CFU/g) and dust samples (log10 CFU/L) were 10.55 and 4.92, respectively. Salmonella ranged from 1.70 to 6.16 log10 CFU/g in litter and only one dust sample had 1.10 log10 CFU/L of Salmonella. As Salmonella levels in litter increased, the probability of obtaining a dust Salmonella positive result also increased. In Experiment 2, attained moisture percentages were 13.0, 18.2, 23.0, 28.2, and 33.3%. Litter recovery for APC, Salmonella, E. coli, and coliforms counts did not differ (P > 0.05) with increasing moisture levels. Dust sample bacterial counts significantly decreased with increasing moisture levels (P < 0.0001). Results from this in vitro study indicate that there is potential for Salmonella to be present in generated dust and the higher levels of Salmonella in litter increase the likelihood of detecting Salmonella in dust. Additionally, with higher litter moisture percentage, prevalence of Salmonella in generated dust was decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call