Abstract

This report sought to study the impact of the balloon-expandable SAPIEN XT (Edwards Lifesciences, Irvine, California) transcatheter heart valve (THV) stent frame geometry and position on outcomes of transcatheter aortic valve replacement (TAVR). Post-implant THV geometry and position might impact atrioventricular conduction, hemodynamic performance, and annular sealing. Eighty-nine consecutive patients who underwent TAVR with a Sapien XT THV had pre- and post-implant multidetector computed tomography, transthoracic echocardiography, and electrocardiograms performed to assess THV stent geometry, atrioventricular conduction, and hemodynamic performance. The THV Circularity (THV eccentricity <10% [eccentricity = minimum stent diameter/maximum stent diameter]) and under-expansion (THV area/nominal THV area <90%) were present in 97.8% (2 of 89) and 0%, respectively. Low THV implantation was associated with new left bundle branch block and complete heart block (3.4 ± 2.0 mm vs. 5.5 ± 2.9 mm, p = 0.01) and with the need for permanent pacemaker implantation (3.5 ± 2.0 mm vs. 7.1 ± 2.5 mm, p = 0.001). In contrast, labeled THV size and THV area oversizing was not associated with atrioventricular conduction disturbances. The relation between inflow stent frame area and annular area was related to paravalvular regurgitation (p = 0.025). Labeled prosthesis size but not prosthesis expansion or eccentricity was related to valve gradient (p = 0.005) and effective orifice area (p < 0.001). Low implantation depth of balloon-expandable THVs is associated with clinically significant new conduction disturbances and permanent pacemaker implantation. Importantly, annular area oversizing was not associated with these complications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call