Abstract

BackgroundGATK Best Practices workflows are widely used in large-scale sequencing projects and recommend post-alignment processing before variant calling. Two key post-processing steps include the computationally intensive local realignment around known INDELs and base quality score recalibration (BQSR). Both have been shown to reduce erroneous calls; however, the findings are mainly supported by the analytical pipeline that incorporates BWA and GATK UnifiedGenotyper. It is not known whether there is any benefit of post-processing and to what extent the benefit might be for pipelines implementing other methods, especially given that both mappers and callers are typically updated. Moreover, because sequencing platforms are upgraded regularly and the new platforms provide better estimations of read quality scores, the need for post-processing is also unknown. Finally, some regions in the human genome show high sequence divergence from the reference genome; it is unclear whether there is benefit from post-processing in these regions.ResultsWe used both simulated and NA12878 exome data to comprehensively assess the impact of post-processing for five or six popular mappers together with five callers. Focusing on chromosome 6p21.3, which is a region of high sequence divergence harboring the human leukocyte antigen (HLA) system, we found that local realignment had little or no impact on SNP calling, but increased sensitivity was observed in INDEL calling for the Stampy + GATK UnifiedGenotyper pipeline. No or only a modest effect of local realignment was detected on the three haplotype-based callers and no evidence of effect on Novoalign. BQSR had virtually negligible effect on INDEL calling and generally reduced sensitivity for SNP calling that depended on caller, coverage and level of divergence. Specifically, for SAMtools and FreeBayes calling in the regions with low divergence, BQSR reduced the SNP calling sensitivity but improved the precision when the coverage is insufficient. However, in regions of high divergence (e.g., the HLA region), BQSR reduced the sensitivity of both callers with little gain in precision rate. For the other three callers, BQSR reduced the sensitivity without increasing the precision rate regardless of coverage and divergence level.ConclusionsWe demonstrated that the gain from post-processing is not universal; rather, it depends on mapper and caller combination, and the benefit is influenced further by sequencing depth and divergence level. Our analysis highlights the importance of considering these key factors in deciding to apply the computationally intensive post-processing to Illumina exome data.Electronic supplementary materialThe online version of this article (doi:10.1186/s12859-016-1279-z) contains supplementary material, which is available to authorized users.

Highlights

  • Genome Analysis Toolkit (GATK) Best Practices workflows are widely used in large-scale sequencing projects and recommend post-alignment processing before variant calling

  • For each of the variant discovery methods, how local realignment and base quality score recalibration (BQSR) might impact the outcome across different divergence levels and coverage depths

  • We observed a 0.4–1 % increase of precision rate in 16 (5.7 %) cases in Insertion and deletion (INDEL) calling (Table 1). These cases used SAMtools or GATK UnifiedGenotyper calling from Stampy alignment (Additional file 1: Figure S1)

Read more

Summary

Introduction

GATK Best Practices workflows are widely used in large-scale sequencing projects and recommend post-alignment processing before variant calling. Two key post-processing steps include the computationally intensive local realignment around known INDELs and base quality score recalibration (BQSR). Both have been shown to reduce erroneous calls; the findings are mainly supported by the analytical pipeline that incorporates BWA and GATK UnifiedGenotyper. Several variant calling algorithms have been developed, such as SAMtools [13], the Genome Analysis Toolkit (GATK) UnifiedGenotyper and HaplotypeCaller [14], FreeBayes [15], Platypus [8], Atlas Suite [16], and the SNP and INDEL callers in the Short Oligonucleotide Analysis Package (SOAP, http://soap.genomics.org.cn/) [17]. FreeBayes, GATK HaplotypeCaller and Platypus are haplotype-based callers which implement De Bruijn graph-based local assembly [8, 14] or construct haplotypes directly from mapped reads [15]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call