Abstract

Population-based biorepositories are important resources, but sample handling can affect data quality. Identify metabolites of value for clinical investigations despite extended postcollection freezing delays, using protocols representing a California mid-term pregnancy biobank. Blood collected from non-pregnant healthy female volunteers (n = 20) underwent three handling protocols after 30min clotting at room temperature: (1) ideal-samples frozen (- 80°C) within 2h of collection; (2) delayed freezing-samples held at room temperature for 3days, then 4°C for 9days, the median times for biobank samples, and then frozen; (3) delayed freezing with freeze-thaw-the delayed freezing protocol with a freeze-thaw cycle simulating retrieved sample sub-aliquoting. Mass spectrometry-based untargeted metabolomic analyses of primary metabolism and complex lipids and targeted profiling of oxylipins, endocannabinoids, ceramides/sphingoid-bases, and bile acids were performed. Metabolite concentrations and intraclass correlation coefficients (ICC) were compared, with the ideal protocol as the reference. Sixty-two percent of 428 identified compounds had good to excellent ICCs, a metric of concordance between measurements of samples handled with the different protocols. Sphingomyelins, phosphatidylcholines, cholesteryl esters, triacylglycerols, bile acids and fatty acid diols were the least affected by non-ideal handling, while sugars, organic acids, amino acids, monoacylglycerols, lysophospholipids, N-acylethanolamides, polyunsaturated fatty acids, and numerous oxylipins were altered by delayed freezing. Freeze-thaw effects were assay-specific with lipids being most stable. Despite extended post-collection freezing delays characteristic of some biobanks of opportunistically collected clinical samples, numerous metabolomic compounds had both stable levels and good concordance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.