Abstract
Due to their ubiquity and the rise of drug-resistant forms, Candida albicans infections pose a serious threat to world health. Exploring new molecular possibilities is essential in order to create newer antifungal medicines to address this challenge. Herein, the use of density functional theory at the B3LYP-D3BJ/aug-cc-pVDZ method along with the in silico molecular docking was utilized to examine the effects of polar (DMSO, ethanol, water) solvation on the reactivity, spectral (NMR, UV, FT-IR) investigation, and the antifungal potential of a bis[ethyl2-(4-hydroxy-3-{(E)-[(1,3-benzothiazol-2-yl)inimo]methyl} phenyl)-4-methyl-1,3-thiazole-5-carbo -xylate (BTZ). The study finds that polar solvents exert a notable influence on BTZ's reactivity, with the highest energy gap observed in the gas phase with a value of 3.4939 eV while in the solvents; the values are 3.4477, 3.4477, and 3.4422 eV for DMSO, ethanol, and water, respectively. This observation implies that BTZ may exhibit varying degrees of reactivity under different solvents. To evaluate BTZ's suitability as a potential antifungal agent, absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies were conducted which reveals that BTZ adheres to Lipinski's rule of five, demonstrating its drug-like potential. Molecular docking simulations against Candida albicans proteins (1ZAP and 6ZDU) show promising binding affinities, with BTZ exhibiting a strong interaction with 1ZAP (-5.4 kcal/mol). The findings of this research contribute valuable insights into the reactivity and potential antifungal activity of BTZ, providing a promising candidate for further exploration in the quest for effective treatments against Candida infections.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.