Abstract
Hydrothermal (HMT) and water agitation (WA) treatments using plasma-activated water (PAW) were employed as sustainable methods to modify the molecular and functional performance of small (rice) and large (potato) starch granules. HMT-PAW and WA-PAW treatments resulted in etched and damaged granular surfaces that rearranged the long and short-range crystallinity of the modified starches. Both treatments seemed to predominantly occur in the amorphous region of the rice starch and the crystalline regions of the potato starch, changing the crystallinity values from 22.9 and 14.8 % to 31.8 and 10.4 %, respectively. Thus, the level of the arrangement of chains reached after PAW treatment decreased the ability of rice starch granules to swell (16 to 9 %) and leach out starch molecules from the granules (4.5 to 1.3 %), decreasing the viscosity and pasting profiles as indicated by n and k values. Opposite behavior was observed in the modified potato starches since starch components leached out to a higher extent (1.7 to 5.4 %). The results showed that HMT and WA treatments using PAW are feasible eco-friendly methods for modifying starch granules without chemical reagents. These modified starches could be suitable as functional ingredients or biopolymeric matrices for the food and packaging industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.