Abstract

Both ASDEX-Upgrade (AUG) data and the generalized HD (GHD) model showed that the scrape-off width broadens as the density/collisionality increases [, ]. A series of BOUT++ transport simulations are performed to study the physics of the scaling characteristics of the divertor heat flux width vs density/collisionality via a plasma density scan with either fixed pressure profile or fixed temperature profile inside separatrix. The simulations show that even in the drift dominated regime, the divertor heat flux width can be broadened due to the transition of the SOL residence time from the parallel particle flow time to the enhanced parallel conduction time as the collisionality/density increases as posited in the GHD model. In addition, the heat flux width is found to be proportional to the square root of ion mass for low collisionality while it has a weakly dependence on ion mass for high collisionality. Furthermore, our simulations show that as the density increases, the radial electric field (E r) well shallows, which potentially weakens E r × B flow shear stabilization of turbulence at high density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.