Abstract

Plant invasion and increased flooding intensity projected by climate change models can change the soil capacity of marine wetland to store P. This is a key question to the nutrient balances and eutrophication processes of coastal areas, especially in China coastal area that is receiving the freshwaters of a country in fast economical developing process. We studied the impact of changes in flooding intensity and plant invasion on total soil-P concentrations in the Minjiang River estuarine wetland. Flooding had a weak positive effect on soil P-fractions concentrations, but this effect was largely counteracted by the negative effect of salinity. Soil clay concentration and pH, both of which were related more with species community composition than with flooding intensity, were directly related to the P-fraction concentrations. The replacement of the native mangrove community by the invasive plant Phragmites australis was related to a decrease in the soil capacity to store P. A suitable management to maintain this wetland area in optimum conditions to act as a natural eutrophication buffer should tend to favor mangrove communities in the new areas that reach more than 220 days y-1 of flooding, and a combination of the three tall-grasses communities below this level of flooding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.