Abstract

Photoperiod modulates reproductive physiology at multiple levels in seasonally breeding animals. Golden hamsters are long-day breeders that diminish their fertility during the short days. Photoperiod is known to regulate hormonal milieu and uterus is a hormone-sensitive dynamic tissue. However, there is lack of molecular insight regarding the impact of photoperiod on uterine physiology with respect to redox and metabolic status in Mesocricetus auratus. We evaluated the impact of photoperiod on circulatory hormonal parameters (triiodothyronine [T3], thyroxin [T4], estradiol [E2], progesterone [P4], melatonin, and insulin), their receptor expressions and key markers associated with redox (SIRT-1/FOXO-1), inflammatory (NFĸB/COX-2) and metabolic (IR/GLUT4) status in uterus. Adult female golden hamsters were exposed to different photoperiodic regimes, that is, short photoperiod (SP; 8L:16D) and long photoperiod (LP; 16L:8D) for 12 weeks. SP drastically decreased peripheral hormone profiles (T3, T4, E2, and P4) and compromised uterine histoarchitecture when compared with LP-exposedhamsters. Further, SP markedly decreased thyroid hormone receptor-α (TRα), insulin receptor, and glucose uptake transporter-4 (GLUT-4) expressions in uterus. We noted enhanced uterine oxidative (increased MDA and decreased SOD/CAT levels), SIRT-1/FOXO-1 expression and inflammatory (NFĸB/COX-2) load in SP condition. Further, elevated levels of circulatory insulin, melatonin, and its receptor (MT-1) expression in uterus was noted under SP condition. Thus, we may suggest that photoperiod might regulate uterine seasonality through modulation of local hormonal and redox/metabolic homeostasis thereby may restrict offspring bearing capacity under short days.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call